338 research outputs found

    Towards a liquid Argon TPC without evacuation: filling of a 6 m^3 vessel with argon gas from air to ppm impurities concentration through flushing

    Full text link
    In this paper we present a successful experimental test of filling a volume of 6 m3^3 with argon gas, starting from normal ambient air and reducing the impurities content down to few parts per million (ppm) oxygen equivalent. This level of contamination was directly monitored measuring the slow component of the scintillation light of the Ar gas, which is sensitive to {\it all} sources of impurities affecting directly the argon scintillation.Comment: 9 pages, 6 figures, to appear in Proc. 1st International Workshop towards the Giant Liquid Argon Charge Imaging Experiment (GLA2010), Tsukuba, March 201

    ARIADNE - A novel optical LArTPC: technical design report and initial characterisation using a secondary beam from the CERN PS and cosmic muons

    Get PDF
    ARIADNE is a 1-ton (330 kg fiducial mass) dual-phase liquid argon (LAr) time projection chamber (TPC) featuring a novel optical readout. Four electron-multiplying charge-coupled device (EMCCD) cameras are mounted externally, and these capture the secondary scintillation light produced in the holes of a thick electron gas multiplier (THGEM). Track reconstruction using this novel readout approach is demonstrated. Optical readout has the potential to be a cost effective alternative to charge readout in future LArTPCs. In this paper, the technical design of the detector is detailed. Results of mixed particle detection using a secondary beam from the CERN PS (representing the first ever optical images of argon interactions in a dual-phase LArTPC at a beamline) and cosmic muon detection at the University of Liverpool are also presented.Comment: 58 pages, 40 figures. Changes from previous version based on pre-publication review: improved quality of various figures, improved clarity of some definitions and reduced longer sentences for better readability, fixed typos and formatting error

    First Demonstration of the Use of LG-SiPMs for Optical Readout of a TPC

    Get PDF
    This paper describes a new method for optical readout of Time Projection Chambers (TPCs), based on the Linearly Graded Silicon Photomultiplier (LG-SiPM). This is a single photon-sensitive detector with excellent timing and 2D position resolution developed at Fondazione Bruno Kessler, Trento (FBK). The LG-SiPM produces time-varying voltage signals that are used to reconstruct the 3D position and energy of ionisation tracks generated inside the TPC. The TPC used in this work contained room-temperature CF4_4 gas at a pressure of 100 mbar, with two THGEMs to produce secondary scintillation light. A collimated 241^{241}Am source (Qα_\alpha = 5.486 MeV) was used to produce the ionisation tracks. The successful reconstruction of these tracks is demonstrated, and the consistency of the methodology characterised through varying the geometry of the tracks within the TPC. Energy reconstruction and deposition studies are also described, demonstrating the feasibility of the LG-SiPM as a potential option for optical TPC readout.Comment: Various changes from previous version based on pre-publication revie

    Argon Purification Studies and a Novel Liquid Argon Re-circulation System

    Full text link
    Future giant liquid argon (LAr) time projection chambers (TPCs) require a purity of better than 0.1 parts per billion (ppb) to allow the ionised electrons to drift without significant capture by any electronegative impurities. We present a comprehensive study of the effects of electronegative impurity on gaseous and liquid argon scintillation light, an analysis of the efficacy of various purification chemicals, as well as the Liverpool LAr setup, which utilises a novel re-circulation purification system. Of the impurities tested - Air, O_2, H_2O, N_2 and CO_2 in the range of between 0.01 ppm to 1000 ppm - H_2O was found to have the most profound effect on gaseous argon scintillation light, and N_2 was found to have the least. Additionally, a correlation between the slow component decay time and the total energy deposited with 0.01 ppm - 100 ppm O_2 contamination levels in liquid argon has been established. The superiority of molecular sieves over anhydrous complexes at absorbing Ar gas, N_2 gas and H_2O vapour has been quantified using BET isotherm analysis. The efficiency of Cu and P_2O5 at removing O_2 and H_2O impurities from 1 bar N6 argon gas at both room temperature and -130 ^oC was investigated and found to be high. A novel, highly scalable LAr re-circulation system has been developed. The complete system, consisting of a motorised bellows pump operating in liquid and a purification cartridge, were designed and built in-house. The system was operated successfully over many days and achieved a re-circulation rate of 27 litres/hour and high purity

    The ArDM experiment

    Get PDF
    The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R&D program, including a 3 l prototype developed to test the charge readout system.Comment: Proceedings of the Epiphany 2010 Conference, to be published in Acta Physica Polonica

    First results on light readout from the 1-ton ArDM liquid argon detector for dark matter searches

    Full text link
    ArDM-1t is the prototype for a next generation WIMP detector measuring both the scintillation light and the ionization charge from nuclear recoils in a 1-ton liquid argon target. The goal is to reach a minimum recoil energy of 30\,keVr to detect recoiling nuclei. In this paper we describe the experimental concept and present results on the light detection system, tested for the first time in ArDM on the surface at CERN. With a preliminary and incomplete set of PMTs, the light yield at zero electric field is found to be between 0.3-0.5 phe/keVee depending on the position within the detector volume, confirming our expectations based on smaller detector setups.Comment: 14 pages, 10 figures, v2 accepted for publication in JINS
    corecore